УДК 621.762.24:669.273

ОЧИСТКА СТОЧНЫХ ВОД КОЖЕВЕННЫХ, ТРАВИЛЬНЫХ И ГАЛЬВАНИЧЕСКИХ ПРОИЗВОДСТВ ОТ ИОНОВ ХРОМА

Л.А. Воропанова*, Ф.А. Гагиева**, З.А. Гагиева***

Л.А. Воропанова

Ф.А. Гагиева

3.А. Гагиева

Аннотация. Исследовано извлечение ионов Cr (III) из водного раствора соли Cr₃(SO₄), и смеси солей Cr₂(SO₄)₃ и K₂Cr₂O₇. Установлено, что из растворов с общей концентрацией хрома 500 мг/дм³ возможно селективное извлечение Cr (III) при величине pH вблизи pH его гидратообразования за время не более 30 мин.

Ключевые слова: сточные воды, сорбция, хром, водный раствор, концентрация, величина рН, сорбент.

Хром относится к высоко токсичным веществам. Он выделен как особо опасный для окружающей среды наряду с Cd, As, Ni, Hg, Pb, Zn. Сточные воды кожевенных, травильных и гальванических отделений перед сбросом в водные бассейны необходимо очищать от ионов тяжелых металлов до норм ПДК [1, 2].

В сточных водах хром содержится в окисленной Cr (VI) и в восстановленной Cr (III) формах. Обычно Cr (VI) восстанавливают до Cr (III), последний вместе с другими катионами тяжелых металлов осаждают известью, содой и другими щелочными реагентами.

Как видно из данных таблицы, гидроксид хрома (III) амфотерен, его осаждение начина-

ется в кислой, а растворение – в щелочной области.

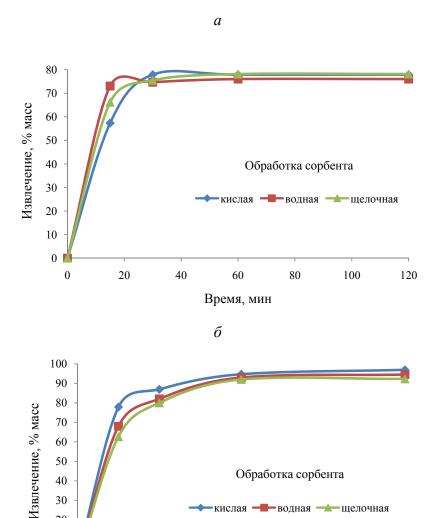
Для очистки сточных вод от экологически опасных составляющих используют сорбцию с применением как катионитов так и анионитов.

В процессе сорбции аниона Cr (VI) для ряда сорбентов, например активированного костного угля, в области рН < 3 развиваются окислительно-восстановительные процессы между Cr (VI) и сорбентом, приводящие к появлению в растворе восстановленных форм хрома, например по

$$Cr_2O_7^{2-} + 14H^+ + 6e = 2Cr^{3+} + 7H_2O.$$
 (1)

Реакция (1) осуществляется тем интенсивнее, чем меньше величина рН и больше время контакта раствора и сорбента [4].

В данной работе исследована сорбция катионов Cr (III) из водных растворов на катионите


рН осаждения гидроксида хрома (III) из водного раствора по данным [3]

рН	Процесс
4,0	Начало осаждения из 1 М раствора
4,7	Начало осаждения из 0,01 М раствора
6,8	Практически полное осаждение (концентрация < 10 ⁻⁵ М)
9,4	Начало растворения осадка
12-13	Полное растворение осадка

^{*} Воропанова Лидия Алексеевна – доктор технических наук, профессор СКГМИ (ГТУ) (lidia_metall@mail.ru).

^{**} Гагиева Фатима Акимовна – кандидат технических наук, патентовед СКГМИ (ГТУ) (fatima.gagieva.80@mail.ru).

^{****} Гагиева Залина Акимовна – кандидат технических наук, ведущий инженер Лаборатории вещественного и химического анализа Центра инженерного сопровождения предприятий ОАО «ГМК «Норильский никель»\Заполярный филиал (qaqievaza@nk.nornik.ru).

Puc. 1. Извлечение иона Cr (III) из водного раствора в зависимости от времени и обработки сорбента при рН: а - 2,5; б - 3,5

60

Время, мин

40

кислая -- водная -- щелочная

80

марки КУ-2, который получен сульфированием сополимера стирола и дивинилбензола (ДВБ). Гелевый сильнокислотный катионит КУ-2 содержит 8-20 % ДВБ.

20

Сорбент подвергали предварительной обработке в течение суток в 0,1 н растворах H₂SO₄ (кислая обработка), либо NaOH (щелочная обработка), или в дистиллированной воде (водная обработка).

В исходном растворе, содержащем извлекаемый металл, устанавливали заданное значение рН, которое в процессе извлечения металла менялось, поэтому регулировали рН до исходного значения щелочью NaOH или кислотой H_2SO_4 . Через определенные промежутки времени от начала процесса контролировали концентрацию ионов металла в водной фазе.

100

120

На *рис.* 1 даны результаты сорбции катионов Cr (III) из водного раствора на сорбенте КУ-2 в зависимости от времени и обработки сорбента при pH: a - 2,5; 6 - 3,5. Видно, что результаты сорбции слабо зависят от предварительной обработки сорбента. Лучшие результаты получены за время не более 30 мин вблизи рН гидратообразования Cr(III): pH = 3,5.

На *рис.* 2 даны результаты сорбции катионов Cr (III) из водного раствора на сорбенте КУ-2 в зависимости от величины рН, времени сорбции

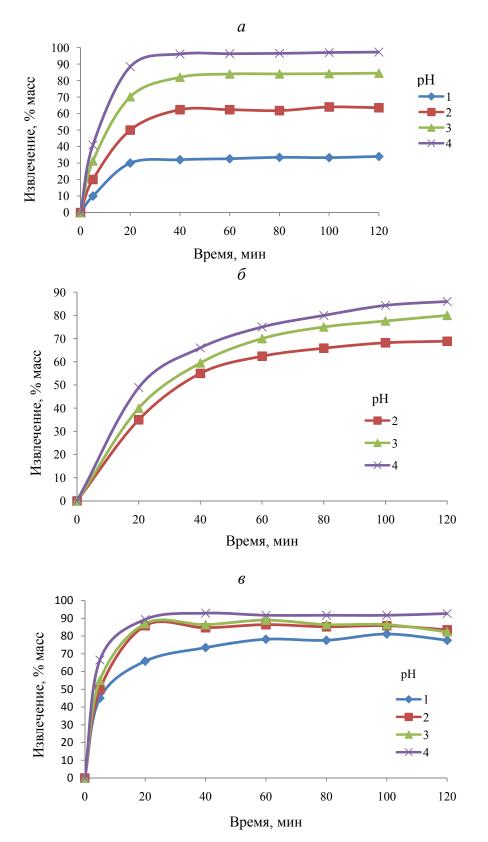
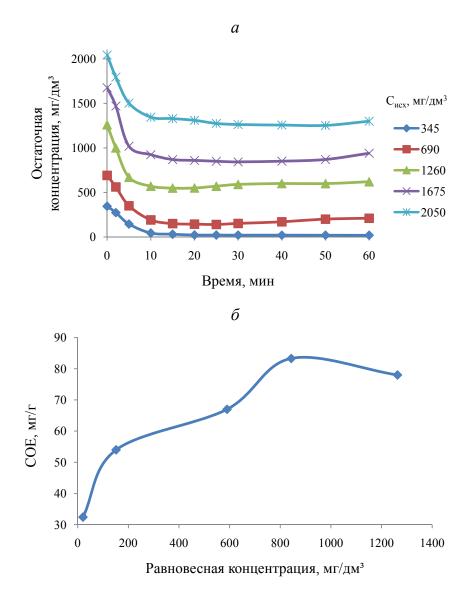



Рис. 2. Зависимость извлечения ионов Cr (III) от величины pH раствора, времени сорбции и предварительной обработки сорбента КУ– 2: a – кислая, б – водная, e – щелочная обработки

Puc. 3. Результаты сорбции Cr (III) из водного раствора при рH = 3,5 и кислой обработке сорбента в зависимости от концентрации и времени сорбции:

a – зависимость остаточной концентрации Cr (III) от исходной концентрации и времени сорбции,

 δ – изотерма сорбции: зависимость статической обменной емкости сорбента СОЕ от равновесной концентрации ионов Cr (III) в момент времени 30 мин.

и предварительной обработки сорбента при концентрации исходного раствора ~ 500 мг/дм³. Лучшие результаты сорбции получены при кислой и щелочной обработке сорбента за время 30 мин вблизи рН гидратообразования: рН = 4. Вблизи рН гидратообразования ионов хрома (III) результаты сорбции слабо зависят от предварительной обработки сорбента, однако в более кислой области разница в результатах сорбции становится заметной: щелочная обработка дает более высокие показатели извлечения, чем кислая.

На *рис.* 3 даны результаты сорбции Cr (III) из водного раствора при pH = 3,5 и кислой обра-

ботке сорбента в зависимости от концентрации и времени сорбции. Равновесие наступает за время 30 мин., величина максимальной статической обменной емкости СОЕ = 80 мг/г.

На рис. 4 даны результаты сорбции хрома из водного раствора смеси солей $\rm Cr_2(SO_4)_3$ и $\rm K_2Cr_2O_7$ при молярном соотношении $\rm Cr~(VI)$: $\rm Cr~(III)$ = 2 : 1 и общем содержании ионов хрома 500 мг/дм³. Извлечение общего хрома из смеси солей составляет примерно 33 %, что соответствует относительному содержанию $\rm Cr~(III)$ в растворе. По данным химического анализа содержание $\rm Cr~(VI)$ сохраняется неизменным, а

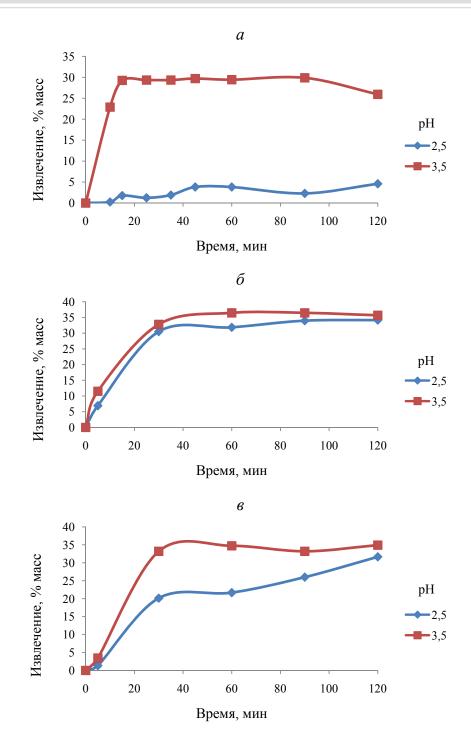


Рис. 4. Результаты сорбции хрома из водного раствора смеси солей $\operatorname{Cr_2(SO_4)_3}$ и $\operatorname{K_2Cr_2O_7}$ при молярном соотношении $\operatorname{Cr}(\operatorname{VI})$: $\operatorname{Cr}(\operatorname{III})$ = 2 : 1 в зависимости от величины pH раствора, времени сорбции и обработки сорбента: a – кислая, δ – водная, ε – щелочная обработки

содержание Cr (III) уменьшается и в течение 30 мин. Cr (III) практически полностью сорбируется. Таким образом, сорбцией на катионите марки КУ–2 можно селективно извлечь из раствора Cr (III), а раствор, содержащий Cr (VI), направить в технологический процесс или на последующее извлечение Cr (VI).

выводы

1. На катионите марки КУ–2 из сточных вод промышленных предприятий с содержанием 500 мг/дм³ Сr (III) можно извлечь ионы хрома за время не более 30 мин. вблизи pH его гидратообразования.

НАУКА – ПРОИЗВОДСТВУ

2. На катионите марки КУ-2 из смеси солей, содержащих ионы Cr (III) и Cr (VI), можно селек-

тивно извлечь ионы Cr (III) вблизи pH его гидратообразования.

ЛИТЕРАТУРА

- **1. Проскуряков В.А., Шмидт Л.И.** Очистка сточных вод в химической промышленности. Химия. Л., 1977.
- **2. Милованов А.В.** Очистка сточных вод предприятий цветной металлургии. Металлургия. М., 1971.
- **3. Лурье Ю.Ю.** Справочник по аналитической химии. М., 1989, с. 297.
- **4. Воропанова Л.А.** Теория и практика сорбционных процессов извлечения цветных металлов из водных растворов. Владикавказ: ООО НПКП «Мавр», 2014.

CLEANING OF SEWAGES FROM THE IONS OF CHROME OF LEATHER, ETCHANT AND GALVANIC PRODUCTIONS

Voropanova L.A.*, Gagieva F.A.**, Gagieva Z.A.***

* Doctor of Technical Sciences, Professor, The North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladicavcaz, Russia (lidia_metall@mail.ru).

** Candidate of Technical Sciences. The North Caucasian Institute of Mining and Metallurgy (State Technological University), Vladicavcaz, Russia (fatima.gagieva.80@mail.ru).

*** Candidate of Technical Sciences. «MMK «Norilsk nickel» Norilsk, Russia (gagievaza@nk.nornik.ru).

Abstract. Extraction of ions of Cr (III) from water solution of salt of $Cr_2(SO_4)_3$ and mixtures of salts of $Cr_2(SO_4)_3$ and $K_2Cr_2O_7$ was investigated. It was found that solutions with a total chromium concentration of 500 mg/dm3 possible selective extraction of Cr (III) at pH close to the pH of hydrate formation for no more than 30 min.

Keywords: sewage, sorghum, chrome, water solution, concentration, size of pH, sorbent.

REFERENCES

- 1. Proskuryakov V.A., Shmidt L.I. Ochistka stochnykh vod v khimicheskoy promyshlennosti. Khimiya. I. 1977
- 2. Milovanov A.V. Ochistka stochnykh vod predpriyatiy tsvetnoy metallurgii. Metallurgiya. M., 1971.
- 3. Lur'ye Yu. Yu. Spravochnik po analiticheskoy khimii. M., 1989, s. 297.
- 4. Voropanova L.A. Teoriya i praktika sorbtsionnykh protsessov izvlecheniya tsvetnykh metallov iz vodnykh rastvorov. Vladikavkaz: OOO NPKP «Mavr», 2014. 1. Proskuryakov V.A., Schmidt L.I. Wastewater treatment in chemical industry. Chemistry. L., 1977.
- 2. Milovanov A.V. Wastewater treatment companies non-ferrous metallurgy. Metallurgy. M., 1971.
- 3. Lurie Y. Handbook of analytical chemistry. M. 1989.
- 4. Voropanova L.A. Theory and practice of sorption processes of extraction of non-ferrous metals from aqueous solutions. Vladikavkaz: Publishing House «Mavr», 2014.

